88 research outputs found

    Certification of Confluence Proofs using CeTA

    Full text link
    CeTA was originally developed as a tool for certifying termination proofs which have to be provided as certificates in the CPF-format. Its soundness is proven as part of IsaFoR, the Isabelle Formalization of Rewriting. By now, CeTA can also be used for certifying confluence and non-confluence proofs. In this system description, we give a short overview on what kind of proofs are supported, and what information has to be given in the certificates. As we will see, only a small amount of information is required and so we hope that CSI will not stay the only confluence tool which can produce certificates.Comment: 5 pages, International Workshop on Confluence 201

    The Certification Problem Format

    Get PDF
    We provide an overview of CPF, the certification problem format, and explain some design decisions. Whereas CPF was originally invented to combine three different formats for termination proofs into a single one, in the meanwhile proofs for several other properties of term rewrite systems are also expressible: like confluence, complexity, and completion. As a consequence, the format is already supported by several tools and certifiers. Its acceptance is also demonstrated in international competitions: the certified tracks of both the termination and the confluence competition utilized CPF as exchange format between automated tools and trusted certifiers.Comment: In Proceedings UITP 2014, arXiv:1410.785

    Automated Termination Analysis for Logic Programs with Cut

    Full text link
    Termination is an important and well-studied property for logic programs. However, almost all approaches for automated termination analysis focus on definite logic programs, whereas real-world Prolog programs typically use the cut operator. We introduce a novel pre-processing method which automatically transforms Prolog programs into logic programs without cuts, where termination of the cut-free program implies termination of the original program. Hence after this pre-processing, any technique for proving termination of definite logic programs can be applied. We implemented this pre-processing in our termination prover AProVE and evaluated it successfully with extensive experiments

    SAT Solving for Argument Filterings

    Full text link
    This paper introduces a propositional encoding for lexicographic path orders in connection with dependency pairs. This facilitates the application of SAT solvers for termination analysis of term rewrite systems based on the dependency pair method. We address two main inter-related issues and encode them as satisfiability problems of propositional formulas that can be efficiently handled by SAT solving: (1) the combined search for a lexicographic path order together with an \emph{argument filtering} to orient a set of inequalities; and (2) how the choice of the argument filtering influences the set of inequalities that have to be oriented. We have implemented our contributions in the termination prover AProVE. Extensive experiments show that by our encoding and the application of SAT solvers one obtains speedups in orders of magnitude as well as increased termination proving power
    • …
    corecore